

Abstracts

Attenuation and Dispersion for High-T_{sub} c/ Superconducting Microstrip Lines

*E.B. Ekholm and S.W. McKnight. "Attenuation and Dispersion for High-T_{sub} c/
Superconducting Microstrip Lines." 1990 Transactions on Microwave Theory and Techniques
38.4 (Apr. 1990 [T-MTT]): 387-395.*

We have calculated the attenuation and dispersion of microstrip lines of the high-T_{sub} c/
superconductor YBa₂Cu₃O₇ (YBCO) on yttria-stabilized zirconia (YSZ)
substrates as a function of frequency and temperature. YBCO is modeled as a BCS
superconductor with a critical temperature $T_{\text{sub}} c = 90$ K and a superconducting energy gap
 $2\Delta = 4.5kT_{\text{sub}} c$. The effect on pulse propagation of superconducting and modal dispersion
in addition to the attenuation is demonstrated. At 60 K, microstrip lines of YBCO are significantly
less attenuating at frequencies below 500 GHz than microstrip lines of copper at the same
temperature. This advantage is particularly significant at the higher attenuations that result as
the substrate thickness is made smaller for miniaturization or to improve the microstrip line
bandwidth. The application of YBCO for microstrip lines appears to be most useful at
frequencies above 100 GHz and dielectric thicknesses less than 100 μm , where the attenuation
of cooled copper is prohibitively large. Cooled to temperatures below 20K, YBCO may make
possible a new generation of extremely high bandwidth (~ 5 THz), small feature size (~ 5 μm)
circuits and devices.

[Return to main document.](#)